
The Control of Kinematically Constrained Shoulder

Complexes: Physiological and Humanoid Examples

Vincent De Sapio†‡, Katherine Holzbaur‡, and Oussama Khatib†
†Artificial Intelligence Laboratory, Stanford University, Stanford, CA 94305, USA

‡Neuromuscular Biomechanics Laboratory, Stanford University, Stanford, CA 94305, USA

Abstract— This paper applies a task-level approach to
the control of holonomically constrained shoulder models.
These models include a biomechanical representation based
on human physiology and a robotic design based on a parallel-
serial structure. Both models involve complex kinematically
coupled motion between the shoulder girdle and the humerus.
This coupled motion has a significant impact on the resulting
humeral pointing dynamics associated with arm movement.
The constrained task-level control approach implemented
here characterizes and exploits the kinematically coupled
nature of these systems by casting the constrained dynamics
into a task-level control framework. Examples are presented
which illustrate the effectiveness of this approach.

Index Terms— task-level control, constraints, parallel-
serial, biomechanics, shoulder kinematics

I. INTRODUCTION

The biomechanical study of human motion, as well the

design of anthropomorphic robotic mechanisms, require

faithful representations of human skeletal kinematics. Over

the past decade there has been a proliferation of humanoid

robotic systems. Human skeletal kinematics has been mod-

eled in these systems at a basic level but some important

aspects have been over-simplified or overlooked. While the

representation of any skeletal joint as an ideal revolute or

spherical joint is only an approximation, it is typically

an acceptable one. Exceptions to this include the knee

joint which does not rotate about an absolute center, but

translates as well, during knee extension [6]. This added

complexity, along with the presence of the patella (knee

cap), has a significant influence on the generation of muscle

moments about the knee. This is an important consideration

if one wishes to simulate the human knee or emulate it in a

humanoid robot that is to be driven by artificial muscles or

cables. Thus, properly addressing the complexity of skeletal

kinematics is important for both biomechanical simulations

as well as anthropomorphic robot design.

Perhaps the most kinematically complicated subsystem

in the human skeletal system is the shoulder complex.

While the purpose of the shoulder complex is to produce

spherical articulation of the humerus, the resultant motion

does not exclusively involve motion of the glenohumeral

joint (see Figure 1). The shoulder girdle, which is com-

prised of the clavicle and scapula, connects the gleno-

humeral joint to the torso and produces some of the motion

associated with the overall articulation of the humerus.

While this motion is small compared to the glenohumeral

motion its impact on overall arm function is significant

[12][13]. This impact is not only associated with the

Fig. 1. Various constituents of the shoulder complex including the
scapula, clavicle, and humerus. The glenohumeral joint produces spherical
motion of the humerus. The shoulder girdle attaches the glenohumeral
joint to the torso and influences the resultant motion of the humerus
through scapulothoracic, sternoclavicular, and acromioclavicular motion.

influence of the shoulder girdle on the skeletal kinematics

of the shoulder complex, but also its influence on the

routing and performance of muscles spanning the shoulder.

As a consequence, shoulder kinematics is tightly coupled

to the behavior of muscles spanning the shoulder. In turn,

the action of these muscles (moments induced about the

joints) influences the overall musculoskeletal dynamics of

the shoulder. This coupling is illustrated in Figure 2.

For the aforementioned reasons, when modeling the

human shoulder it is important to model the kinematically

coupled interactions between the shoulder girdle and the

glenohumeral joint. This is true for biomechanical simula-

tions as well as for robotic analogs of the human shoulder.

To this end, this paper applies a task-level approach to

the control of holonomically constrained shoulder models;

both human and humanoid. Through this application the

novelty and efficacy of the constrained task-level approach

is demonstrated with regard to analysis and control of

constrained physiological and robotic shoulder complexes.

As a point of departure, a formulation for constrained

task-level control is reviewed. Subsequently, this control

approach is applied to a physiological model of the human

shoulder. In this case, emphasis is placed on exploiting

the benefits of constrained task-level control for biome-
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Fig. 2. The dependency of musculoskeletal dynamics on muscle routing and skeletal kinematics. Muscle activation inputs, a, cause force generation in
the muscles. Force generation, fT , is dependant on muscle length, contraction velocity, and musculotendon length (lM , l̇M , and l), which in turn are
dependant on skeletal configuration (q and q̇). The muscle induced joint moments, τ , are dependent on these muscle forces as well as muscle moment
arms, R, (which again are dependent on skeletal kinematics). Finally, these joint moments influence the multibody dynamics of the skeletal system.

Fig. 3. Bilateral representation of the shoulder complex proposed by
Lenarčič et al. [13]. The parallel mechanism shoulder girdle is attached
to a fixed torso. The humerus link is attached to the shoulder girdle via
a spherical glenohumeral joint.

chanical simulation. A comparison is made between the

constrained shoulder model and a simple variant with only

glenohumeral articulation. This comparison addresses the

control torques required to achieve a desired motion control

objective as well as the moment generating capacities of

the muscles in both the constrained and simple variants.

Lastly, the constrained task-level control approach is

applied to a model of a humanoid shoulder complex. In

this case emphasis is placed on exploiting the benefits of

constrained task-level control for the control of a redundant

parallel-serial shoulder design (see Figure 3). Constrained

task-level control is particularly well suited not only to

simulating such a system but also for implementation in

hardware.

II. CONSTRAINED DYNAMICS AND CONTROL

Given a set of mC holonomic constraint equations, φ =
0, the constrained equations of motion are given by,

τ = Aq̈ + b + g − ΦT λ (1)

subject to the constraint equations. The term τ is the n×1
vector of externally applied generalized forces (torques),

A(q) is the n×n mass matrix, b(q, q̇) is the n× 1 vector

of centrifugal-Coriolis terms, and g(q) is the n× 1 vector

of gravity terms. The constraints are enforced through the

Lagrange multipliers, λ. The mC ×n constraint matrix, Φ,

is given by,

Φ(q) �
∂φ

∂q
(2)

For conciseness we will often refrain from explicitly denot-

ing the functional dependence of these quantities on q and

q̇. This practice will also be employed with other quantities

throughout the paper.

Given an mT × 1 task vector, xT , and corresponding

mT ×n task Jacobian, JT , we can map (1) into operational

space [9] [10]. This procedure is presented in [4] and the

results will be briefly summarized here. The constrained

operational space equations of motion resulting from the

operational space mapping are,(
fT

fC

)
+

(
0
λ

)
= Λ(q)

(
ẍT

0

)
+μ(q, q̇)+p(q) (3)

where fT is the mT × 1 task component and fC is the

mC × 1 constraint component of the applied operational

space force vector. The term Λ(q) is the (mT + mC) ×
(mT + mC) operational space mass matrix, μ(q, q̇) is the

(mT +mC)×1 operational space centrifugal-Coriolis force

vector, and p(q) is the (mT + mC) × 1 operational space

gravity vector. These terms are computed from JT and Φ,

and are detailed in [4].

To account for certain joints being unactuated we impose

the following condition,

S̃(JT
T fT + ΦT fC) = 0 (4)

where S̃ is a selection matrix for the unactuated joints.

That is, S̃ selects the unactuated joints from the overall

generalized force vector.

By partitioning (3) and using estimates of the operational

space dynamic properties we have the following dynamic
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compensation equation,

fT = Λ̂11f�
T + μ̂1 + p̂1 (5)

where f�
T is the input of the decoupled system and can be

chosen as,

f�
T = Kp(xTd

− xT ) + Kv(ẋTd
− ẋT ) + ẍTd

(6)

The constraint force control term, fC , can be resolved by

using,

fC + λ = Λ̂21f�
T + μ̂2 + p̂2 (7)

in the case that the control is chosen with regard to

optimizing the resulting constraint forces, or, by using (4)

in order to account for certain joints being unactuated. The

overall control torque is given by,

τ = JT
T fT + ΦT fC (8)

III. HUMAN SHOULDER MODEL

A. Model and Control Implementation

The upper extremity model of Holzbaur et al. [8] has

been employed in this work. The model consists of a

shoulder complex as well as a lower arm model. Holzbaur

et al. implemented their model in the SIMM (Software

for Integrated Musculoskeletal Modeling) environment [7]

where a minimal set of 7 generalized coordinates were

chosen to describe the configuration of the shoulder com-

plex, elbow, and wrist (3 for the shoulder complex, 2 for

elbow flexion and pronation, and 2 for wrist flexion and

deviation). Since a minimal set of coordinates were em-

ployed in [8] the constraints that model the shoulder girdle

are implicitly handled. Thus, all motions of the shoulder

girdle are dependent on the three glenohumeral rotation

coordinates. These are elevation plane, h1, elevation angle,

h2, and shoulder rotation, h3.

The constrained movement of the shoulder girdle was

determined from the shoulder rhythm regression analysis

of de Groot and Brand [3]. The model obtained from this

regression analysis was shown to fit well for an independent

set of shoulder motions and on a different set of subjects

than was used for the regression analysis [3]. For these

reasons the model of de Groot and Brand is considered to

be superior in predicting shoulder motion than a simple

unconstrained model which only reflects glenohumeral

rotation.

Due that fact that SIMM restricts any joint motion to

a function of a single independent generalized coordinate,

the regression equations were simplified by Holzbaur et

al. to be a function of only thoracohumeral (humerus

elevation) angle, h2, [8]. The shoulder kinematics for this

parameterization are shown in Table I.
The terms d1, d2, and d3 are fixed translation vectors

and Q1, · · · ,Q7 are rotation matrices associated with

spins about successive local coordinate axes, where the

arguments identify the spin angles. The superscript t refers

to the torso as the frame of reference. The constraint

constants, c, associated with the dependency on humerus

Translation Rotation

clavicle
tdc = d1

t
cQ = Q1(c1h2)Q2(c2h2)

scapula
tds = tdc + t

cQd2
t
sQ = Q3(c3h2)Q4(c4h2)Q5(c5h2)

humerus
tdh = tds + t

sQd3
t
hQ = Q6(h1)Q7(h2)Q6(−h1)Q6(h3)

TABLE I

SHOULDER KINEMATICS USING A MINIMAL SET OF COORDINATES.

elevation angle, h2, were obtained from the regression

analysis of de Groot and Brand [3]. They are,

c =
( −0.242 0.123 −0.049 0.396 0.184

)
For the purposes of formulating the dynamics and con-

trol it is often preferable to use a non-minimal, but stan-

dardized, set of generalized coordinates that are amenable

to numerical formulation. Additionally, it is preferable to

use a parameterization which preserves the physical mean-

ing of the generalized forces as torques about individual

joints. Often when using a minimal set of coordinates this

is not the case since a single generalized coordinate may

influence multiple joint rotations, as in the parameterization

of [8].

For these reasons we reparameterized the model of [8] to

include a total of n = 13 generalized coordinates (9 for the

shoulder complex and 4 for the elbow and wrist) to describe

the unconstrained configuration of the arm. As shown in

Figure 4, the coordinates q6, q7, and q9 correspond to the

independent coordinates for the shoulder complex used in

[8]; elevation plane, elevation angle, and shoulder rotation,

respectively.

Five holonomic constraints need to be imposed to prop-

erly constrain the motion of the shoulder girdle. With an

additional constraint at the glenohumeral joint we have a

total of mC = 6 constraints. This yields p = n − mC = 7
degrees of kinematic freedom (3 for the shoulder complex

and 4 for the elbow and wrist). Since this framework does

not limit the dependent coordinates to functions of only a

single independent coordinate, as in the case of the SIMM

model [8], we can implement the complete set of shoulder

rhythm constraints [3] for our analysis. These constraint

equations, φ(q) = 0, are given by.

φ(q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1 − b1q6 − c1q7

q2 − b2q6 − c2q7

q3 − b3q6 − c3q7

q4 − b4q6 − c4q7

q5 − b5q6 − c5q7

q8 + q6

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0 (9)

where the constraint constants, b, associated with the

dependency on elevation plane, q11, were obtained from

the regression analysis [3]. They are,

b =
(

0.120 −0.046 0.140 −0.079 −0.028
)
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Fig. 5. (Top) Time response of humeral pointing during execution of a goal command for constrained and simple shoulder models. Appropriate
dynamic compensation accounts for the control task, xT , and the shoulder girdle constraints, φ. The control gains are Kp = 100 and Kv = 20.
(Bottom) Glenohumeral joint control torques as predicted by the constrained and simple shoulder models. The inclusion of shoulder girdle constraints
influences the resulting torques, particularly for shoulder elevation angle and elevation plane.

Defining a humeral orientation, or pointing, task we

have,

xT (q) =
(

q6 q7 q9

)T
(10)

We need to specify a selection matrix, S̃, to account for

the unactuated (passive) joints, q1, · · · , q5, and q8. Using

the control framework presented in Section II we have the

control equations,

fT = Λ11ẍT + μ1 + p1

S̃(JT
T fT + ΦT fC) = 0

τ = JT
T fT + ΦT fC

(11)

Figure 5 displays simulation plots for the shoulder

complex under a goal position command. A linear (PD)

control law is used as the input of the decoupled system.

The controller was applied to both the constrained shoulder

model and a simple model with only glenohumeral artic-

ulation (motion of the scapula and clavicle not coupled

to glenohumeral motion). The glenohumeral joint control

torques associated with the constrained and simple shoulder

models performing identical humeral pointing tasks differ

over their respective time histories. This is particularly true

for shoulder elevation angle and elevation plane.

B. Muscle-based Actuation

In biomechanical simulations it is desirable to actu-

ate the constrained shoulder complex using a system of

musculotendon actuators. Lumped parameter models for

muscle-tendon pairs yield equations of state which describe

musculotendon behavior [17]. Given a set of r musculoten-

don actuators we can express the vector of musculotendon

forces as fT = fT (lM , l̇M ,a), where lM are the muscle

lengths whose behavior is described by a state equation.

By using either a stiff tendon model [5] or a steady state

evaluation of the musculotendon forces we can express

fT = fT (q, q̇,a). In either case the joint moments induced

by these musculotendon forces are,

τ = R(q)fT = −L(q)T fT (12)

where L(q) is the r × n musculotendon path Jacobian

and R(q) = −LT is the n × r matrix of musculotendon

moment arms. Equation (1) can thus be expressed in terms

of muscle actuation,

RfT (q, q̇,a) + ΦT λ = Aq̈ + b + g (13)

The operational space form is,

T (q)fT (q, q̇,a) +
(

0
λ

)
= Λ

(
ẍT

0

)
+ μ + p (14)

where T (q) = J̄
T
R ∈ R

(mT +mC)×r. Our motion control

equation can then be expressed as a variation of (5),

T 1fT (q, q̇,a) = Λ̂11f�
T + μ̂1 + p̂1 (15)

where T 1 is the mT × r submatrix of T . Due to both

kinematic redundancy and actuator redundancy there will
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Fig. 4. Reparameterization of the model of Holzbaur et al. Using a
non-minimal set coordinates, q6, q7, and q9, correspond to the gleno-
humeral rotations, h1, h2, and h3. Five holonomic constraints couple the
movement of the shoulder girdle with the glenohumeral rotations.

typically be many solutions for a. Using a static opti-

mization procedure [16] this can be resolved by finding

the solution which minimizes ‖a‖2
given a ∈ [0, 1]. This

corresponds to minimizing the instantaneous muscle effort.

The use of ‖a‖2
and similar cost measures have been

suggested in a number of sources [1][2]. Since muscle

activation is a normalized quantity it reflects a natural

measure for muscles with different strength capacities.

In Section III-A we observed that the constrained shoul-

der model, which involves kinematic coupling between

the humerus, scapula and clavicle, differs from the simple

shoulder model with regard to the control torques that are

required to achieve a desired motion control task. The

constrained model also differs from the simple model in

the degree to which the system of muscles are able to

generate control forces to achieve a desired motion control

task. This is due to the influence of the constrained motion

between the humerus, scapula and clavicle on the muscle

forces and muscle moment arms about the glenohumeral

joint (see Figure 6).

An example of this is shown in Figure 7. Predicted

muscle moment arms, muscle forces, and moment gener-

ating capacities for the deltoid muscles are compared for

the simple and constrained shoulder models. The muscle

path and force-length data were taken from the study of

[8]. In the constrained shoulder model the motions of

the scapula and clavicle are highly coupled to humerus

elevation angle (q7 coordinate), whereas, in the simple

shoulder model the motion of the scapula and clavicle

are not coupled to glenohumeral motion. The paths of the

deltoid muscles are affected by the constrained motion

of the humerus, scapula, and clavicle. This results in

Fig. 6. Muscle paths spanning the shoulder complex. Muscle moment
arms are determined from the muscle path data [8]. The motion of the
shoulder girdle influences the moment arms about the glenohumeral joint.

significant differences in moment arms predicted by the

two models, with the constrained model often generating

moment arms of substantially larger magnitude than the

simple model.

Additionally the predicted isometric muscle forces (com-

puted at full activation) generated by the two models differ.

The resulting moment generating capacities of the con-

strained model are often substantially larger in magnitude

than the simple model. This implies that the simple model,

which excludes the constrained shoulder girdle motion,

typically underestimates the moment generating capacities

of muscles that span the shoulder, since [8] demonstrated

correlation between predicted and experimental moment

generating capacities for the constrained model. This is

critical in various application areas involving the study and

synthesis of human movement [11].

IV. HUMANOID ROBOTIC SHOULDER COMPLEX

The purpose of the biomechanical human shoulder

model discussed in the previous section is to simulate

physiological shoulder motion and musculotendon routing.

As such, it is ultimately intended to be actuated in a

physiological manner, that is, by a system of musculo-

tendon actuators that simulate skeletal muscle. For robotic

applications, a mechanical analog of the human shoulder

may be sought. If this mechanical analog is to be actuated

by artificial muscles or cables it is desirable to emulate

human shoulder kinematics and muscle routing in order

reproduce the human-like action of muscles (moment arms)

about the joints.

Standard robotic actuation may be adapted to a hu-

manoid robotic shoulder complex, rather than actuation

that attempts to emulate musculoskeletal physiology. This

offers the advantages of human shoulder kinematics with-

out requiring complicated actuation. An example of such

a system is the shoulder complex proposed by Lenarčič et

al. [13] [14]. Their mechanism consists of a parallel-serial
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Fig. 7. Muscle moment arms, muscle forces, and moment generating capacities for the deltoid muscles, as predicted by the constrained and simple
shoulder models. The constrained model typically generates moment arms of substantially larger magnitude than those of the simple model. The resulting
moment generating capacities associated with the constrained model are also typically larger in magnitude than those associated with the simple model.

kinematic structure with four actuated prismatic joints (par-

allel subsystem) and three actuated revolute joints (serial

subsystem).

The parallel subsystem, consisting of four extensible

legs attached to a moveable platform, acts as the shoulder

girdle which supports the glenohumeral joint. As such,

its design is intended to emulate the functionality of

the scapula and clavicle attached to a fixed torso and

connected by the scapulothoracic, sternoclavicular, and

acromioclavicular joints. A parallel kinematic structure was

chosen because of the need for high stiffness and precision

in orienting the attached glenohumeral joint [13]. The

serial subsystem consists of a spherical glenohumeral joint

attaching the humerus link to the shoulder girdle.

A. Model and Control Implementation

Lenarčič et al. presented detailed kinematic analyses

of their shoulder complex design. For our purposes we

will present a kinematic parameterization and constraint

definition suitable for use in our constraint based control

framework. The system is partitioned into four serial chains

with a total of 16 generalized coordinates defined as shown

in Figure 8. Holonomic loop constraints need to be imposed

which reflect the connection of the extensible legs to the

moveable platform. These constraints are expressed as,

φ(q) =

⎛
⎝ rl1 − rp1

rl2 − rp2

rl3 − rp3

⎞
⎠ = 0 (16)

With these constraints the system possesses p = n−mC =
16−9 = 7 degrees of freedom (4 for the parallel subsystem

and 3 for the serial subsystem).

Fig. 8. The parallel and serial subsystems comprising the humanoid
shoulder complex proposed by Lenarčič et al. A total of 16 generalized
coordinates are employed (n = 16). These are constrained by 9 holo-
nomic constraints (mT = 9) yielding 7 degrees of freedom (p = 7).

The humanoid shoulder complex is intended to be con-

trolled by k = 7 actuators. The actuated joints consist of the

four extensible legs and the three glenohumeral rotations.

The typical task to be controlled is humeral orientation

or pointing, which consists of three task coordinates (for

example, Euler angles).

In addition to these control coordinates Lenarčič et al.
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Fig. 9. (Top) Time response of humeral pointing during execution of a goal command. Appropriate dynamic compensation accounts for the control
task, xT , and the shoulder girdle loop constraints, φ. The command specifies the desired humeral Euler angles, α, β, and γ using a zyx sequence.
(Bottom) Two additional task coordinates are controlled as well. Time response of central leg extension, q10, shoulder girdle pose angle, q12, and
glenohumeral rotation angle, q15. These coordinates are coupled through the control task, xT , which causes q15 to track q12, and q10 to vary as a
function of q12. A 2-dimensional null space (N = 2) complements the task. The control gains are Kp = 100 and Kv = 20.

specify physiological coupling between the configuration

coordinates. Specifically, the central extensible leg and

glenohumeral rotation are intended to vary as a func-

tion of the pose of the shoulder girdle. We will specify

this coupling in a somewhat arbitrary manner here but

the particular nature of this coupling should be derived

from measurements of human subjects performing humeral

pointing. The overall task vector is of dimension mT = 5
and is specified as,

xT (q) =

⎛
⎜⎜⎜⎜⎝

α
β
γ

q12 − q15

q10 − 1
10 (1 + q12/π)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

αG

βG

γG

0
0

⎞
⎟⎟⎟⎟⎠ (17)

where α, β, and γ are the Euler angles representing

humeral orientation using a zyx axis sequence. The sub-

script G represents the goal values for these quantities.

The last two elements in the task vector correspond to the

physiological control coupling constraints.

We need to specify a selection matrix, S̃, to account for

the unactuated (passive) joints, q2, q3, q5, q6, q8, q9, q11,

q12, and q13. Equations (11) can then be implemented as

in Section III-A.

Figure 9 displays simulation plots for the shoulder

complex under a goal position command. A linear (PD)

control law is used as the input of the decoupled system.

There is an N = p−mT = 2 dimensional null space (self

motion manifold) whose control is not specified.

V. CONCLUSIONS

In this paper a constrained task-level control approach

has been implemented for the simulated control of physio-

logical and robotic shoulder complexes. In the case of the

physiological shoulder complex it has been demonstrated

that modeling the constrained behavior between the human

shoulder girdle and the glenohumeral joint is important

in reproducing the appropriate control torques required

for achieving a motion control task. It has also been

demonstrated that modeling the constrained behavior in

the shoulder girdle is important in generating appropriate

muscle moment arms, muscle force capacities, and muscle

moment capacities about the glenohumeral joint.

For biomechanical simulations this provides a justifi-

cation for the use of constrained versus simple shoulder

models which characterize only glenohumeral rotation.

Given this justification, the constrained task-level control

approach implemented here is particularly well suited to

simulating systems which involve complex kinematically

coupled behavior. Such a control implementation is valu-

able in both evaluating the effect of the kinematic coupling

in the shoulder girdle as well as providing a general

purpose tool for the biomechanical simulation of these

systems.
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In the case of the robotic shoulder complex the same

basic constrained task-level control framework has been ap-

plied to the control of a simulated parallel-serial humanoid

shoulder complex. Lenarčič et al., who proposed this basic

design made a strong justification for the parallel structure

of the shoulder girdle based on the need for high stiffness

and precision in orientation. The overall shoulder complex

also has the benefit of kinematic redundancy (self motion

capability) which allows greater freedom and complexity

of achievable motions.

While Lenarčič et al. provided a kinematic analysis of

their design no control framework based on the system

dynamics was presented. Given the justification for this

redundant parallel-serial design, the constrained task-level

control approach implemented here has been shown to be

very well suited to the control of such a system. This is not

only due to its ability to deal with the constraints introduced

by the parallel subsystem but also to its ability to easily

encode the control in a task-level manner.
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